

Learning Outcomes

- Identify proper approaches to inspect, monitor and document construction and testing of micropile systems
- Understand the various load testing and interpretation methods for micropiles

Quality Assurance and Quality Control (QA/QC)

- Critical importance
- Plans and specification development stage through final construction
 - Implementation of all requirements
 - Enforcement of qualifications
 - Submittal reviews
 - Installation

Quality Control

- Build the production piles like the test piles !
- Experienced drillers and inspectors
- Document test pile and production pile installation :
 - drill depth & similar soil
 - grouted length
 - grout pressure & volume
 - problems

Contractor Submittal Requirements

- Contractor and employee qualifications
- Materials anticipated to be drilled
- Performance criteria
- Location and orientation of the micropiles and tolerances
- Micropile size and configuration

Contractor Submittal Requirements

- Micropile capacity
- Drilling and grouting equipment
- Anticipated equipment loads on structure or adjacent ground
- General installation plan
- Grout mix design and pressures

Contractor Submittal Requirements

- Reinforcement including size, configuration and corrosion protection
- Postgrouting methods (if applicable)
- Documentation and protection of existing utilities and environment
- Plans to accommodate low headroom or obstructions

Contractor Submittal Requirements

- Testing criteria
- Testing and monitoring devices
- Details of connections to existing structures
- Criteria for implementing remedial procedures
- Spoils handling

Material Handling and Storage

- Grout
- Cement
 - prevent hydration, keep dry, avoid moisture
 - avoid overcompaction by overstacking
 - perform visual inspections (lumps and foreign matter)
- Admixtures
 - same as cement
 - check shelf life, manufacturer's recommendations
- Water
 - potable

no impurities

Material Handling and Storage

- Reinforcing Steel
- Store in a protected location
- Inspect steel when delivered to site
- Reject steel that exhibits flaky corrosion or pitting
- Extra care with corrugated protected/epoxy-coated bars

Construction Monitoring

Drilling

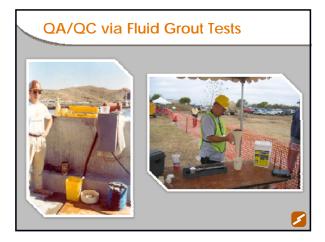
- Minimize ground loss
- Prevent borehole collapse
- Remove casing so the reinforcement is not disturbed, damaged or in contact with the soil
- Keep hole full of grout to minimize hole collapse
- Keep fluid level in hole above external groundwater level to maintain balance of pressures

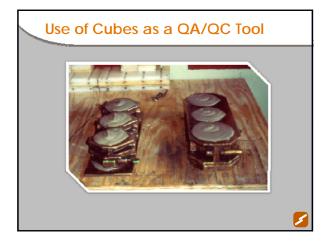
Construction Monitoring

Drilling (cont.)

- Schedule drilling, reinforcement installation and grouting to suit ground conditions (keep process continuous)
- Plug or cover holes, project casing above the head elevation
- Provide for proper disposal and containment of the drilling spoils
- Ensure tolerances are met

Construction Monitoring


Grouting – Mixing and Pumping

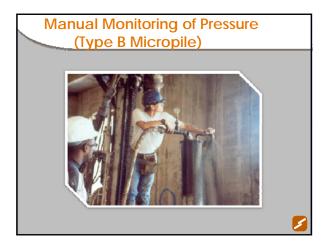

- Ensure continuous grout placement
- Ensure cement is colloidally mixed and grout is continuously agitated
- Prevent presence of air in the grout lines
- Do not draw down the level of grout in the agitation tank below the crown of the exit pipe
- Ensure exclusion of foreign matter during grout placement

Construction Monitoring

Grouting – Mixing and Pumping

- Fluid tests to confirm proper batching (in real time)
- Cubes for strength testing (retrospective)

Construction Monitoring



- Grouting Placement
- Prevent heaving or ground distress
- Prevent soil in bottom of hole from blowing in
- Grout as soon as possible after drilling the bond zone
- Use tremie to ensure complete filling of hole
- Tie tremie tube loose enough for removal during/or after tremie grouting

Construction Monitoring

Grouting - Placement (cont.)

- Observe suitable grout return
- Maintain a positive head at the grout holding tank
- Measure grout pressures close to the point of injection to account for line losses
- Monitor grout pressures and volumes throughout both tremie grouting and pressure grouting (if used) processes
- Typical postgrouting pressures are 2 to 4 MPa
 safety issue

Construction Monitoring

Installation of Reinforcement

- Install either before or after initial grout placement but before temporary casing (if used) is withdrawn
- Record the total pile length and bond zone length
- Insert to the prescribed length without the use of force
- Do not damage corrosion protection or centralizers during installation

Construction Monitoring

Installation of Reinforcement (cont.)

- Ensure reinforcement is clean of any surface soil, oil, mud etc.
- Check attachment and intervals (typically 2.5 to 3 meters) of centralizers and spacers
- Center reinforcement in borehole
- Ensure full engagement of successive bar or pipe sections

QA/QC Documentation

Pile Load Testing

- Ultimate and Verification load testing
- Proof load testing
 - Verifing:
 - design capacityconstruction processes
- Check pile load test setup with the approved working drawings
- Perform pile load testing in accordance with the project specifications

Testing Specifications

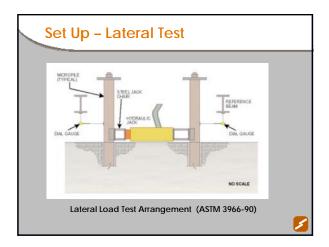
- Number of "sacrificial" piles to be tested (Ultimate vs. Verification)
- Number of production piles to be tested
- Magnitude of test load
- Method of load application

Testing Specifications

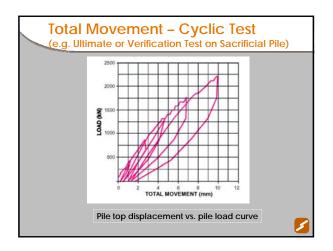

- Duration of load hold steps (especially for extended creep testing)
- Acceptance criteria (load, movement, creep)
- Load test set up, instrumentation and measurement

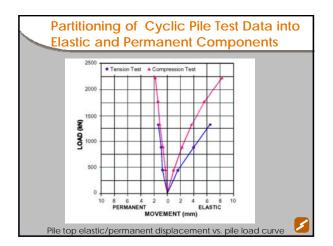
Load Testing Requirements Determining Factors

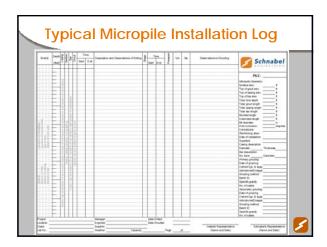
- Number of production piles
- Magnitude and type of loading
- Sensitivity of structure / consequences of failure
- Geotechnical conditions and variability
- Access / headroom / constructability restraints
- Engineer / Contractor experience
- Factors of Safety



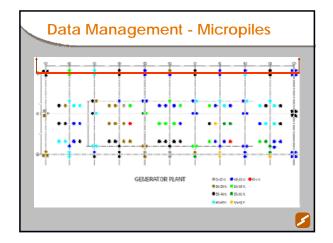
Acceptance Criteria For Verification Test Criteria 1: Rate of Pile Head Movement at the Test Load Criteria 2: Total Pile Head Movement at the Design Load Criteria 3: Total Pile Head Movement Under Sustained Load (Creep)



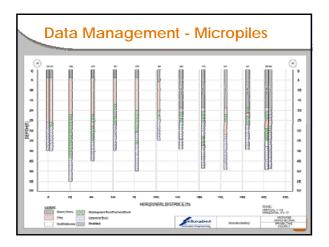




"Strange Results" or Failure


- Clarify possible reasons for "strange results" or failure in real time
- Options following failure
 - Modify design of individual pile
 - Modify construction
 - Reduce unit load requirements/increase number of piles
 - Additional testing

QA/QC Documentation


- Production Piles
- Comprehensive records
 - basis of payment
 - deviations in future pile performance
- Micropile installation logs
- Grout production and consumption records
- Compressive strength testing of grout samples
 - (AASHTO T106/ASTM C-109)
 - Specific Gravity measurements of grout w/Baroid Mud Balance Test

Learning Outcomes

- Key elements to be evaluated during construction
- Factors that affect development of a load testing program

5

